
Journal of Computational Physics 209 (2005) 193–206

www.elsevier.com/locate/jcp
Revisiting and parallelizing SHAKE

Yael Weinbach a, Ron Elber b,*

a The Hebrew University, Department of Computer Science, Givat Ram, Jerusalem 91904, Israel
b Cornell University, Department of Computer Science, Ithaca, NY 14853, USA

Received 17 September 2004; received in revised form 16 March 2005; accepted 16 March 2005

Available online 11 May 2005
Abstract

An algorithm is presented for running SHAKE in parallel. SHAKE is a widely used approach to compute molecular

dynamics trajectories with constraints. An essential step in SHAKE is the solution of a sparse linear problem of the type

Ax = b, where x is a vector of unknowns. Conjugate gradient minimization (that can be done in parallel) replaces the

widely used iteration process that is inherently serial. Numerical examples present good load balancing and are limited

only by communication time.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Dynamics with constraints; Conjugate gradient; Lagrange multipliers
1. Introduction

Parallelization of a single Molecular Dynamic trajectory is one of the most promising approaches to ex-

tend the time scale of simulations. Here, we focus on distributed memory machines that are cheaper overall

and have significant potential for further growth. In a Molecular Dynamic simulation the coordinates (and

velocities) are propagated serially in small time steps following Newton�s equation:
0021-9

doi:10.

* Co

E-m
M €X ¼ �rU : ð1Þ

The mass matrix is M (diagonal in the Cartesian representation) and U is the potential energy. If con-

straints are introduced frlðX Þ ¼ 0g‘l¼1 (the total number of constraints is ‘) then the equations of motions

are modified to include Lagrange multipliers, kl, and constraint forces, �$rl
991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

1016/j.jcp.2005.03.015

rresponding author. Tel.: +607 255 7416; fax: +607 255 4428.

ail address: ron@cs.cornell.edu (R. Elber).

mailto:ron@cs.cornell.edu

194 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
M €X ¼ �rU �
X
l

klrrl

subject to the constraints rl Xð Þ ¼ 0 8l:
ð2Þ
Calculations of the forces can take more than 90% of the computation time (if run serially). The esti-

mates are based on the MOIL program [8] (see Section 8), though similar numbers are expected for

other programs as well. If the fast degrees of freedom (e.g., bonds) are constrained with the SHAKE
algorithm [18] a larger time step, typically by a factor of 2–3, can be used. The gain in computational

time comes with the (small) penalty of 5–10% of serial calculation time. The simulations with SHAKE

can therefore be made significantly longer in time at a similar computational cost to simulations of

unconstrained dynamics.

Parallel and distributed computing is an attractive way to accelerate the simulations further. Indeed, sig-

nificant advances were made in algorithms that compute Molecular Dynamic simulations in parallel. Imple-

mentations of parallel algorithms for Molecular Dynamic simulations focus on the calculation of the forces

[4,5,7,10–13,15,16,19]. In the applications presented in this manuscript, atom decomposition is used. We
call atom decomposition to algorithms that keep a complete copy of the coordinate and velocity vectors

on each of the processors and distributes the calculation of the forces. It is especially suitable for systems

that are not very large which we consider here (spatial decomposition, an alternative parallelization ap-

proach that divides the atoms between the processors, can be done efficiently for large systems).

Efficient algorithms to parallelize the calculations of the forces in the atomic or spatial decomposition

schemes are available. However, parallelization of SHAKE is considerably more difficult to perform effi-

ciently. The usual implementation of SHAKE (which we call bond relaxation [18]) is inherently serial

and cannot be parallelized in the general case. The parallelization of direct relaxation methods – one bond
is corrected at a time, are difficult to implement and to exactly reproduce the serial algorithm. Therefore

practical applications are either approximate, or the algorithms are specifically tailored to the problem

at hand. The complexity of the parallelization of SHAKE is related to the constraints� coupling matrix

All0 to be defined below (Eq. (11)). Two constraints, l and l 0, are directly coupled if All0 6¼ 0, and coupled

if an integer n exists such that Anð Þll0 6¼ 0. Significant direct coupling makes the parallel (and serial) imple-

mentation of SHAKE more difficult. Special cases in which the matrix All0 decomposes into small blocks

(e.g., water molecules) can be parallelized in a trivial way. In fact, our algorithm exploits block structure

of the coupling matrix, for example water molecules for which the usual SHAKE of bond relaxation con-
verges more slowly than our algorithm. Moreover, for complex polymer simulations (such as protein fold-

ing), parallel decoupling or exact bond relaxation are not possible. These cases become more important as

polymer simulations without explicit solvent gain in popularity (for implicit solvent papers see for instance

the generalized Born model [9,21,24]). Examples for previous heuristic approaches are as follows: Debolt

and Kollman [7] introduced a pipeline procedure for relaxation of bond lists, and Brown et al. [3] intro-

duced a multi-coloring scheme for sequential relaxation of disconnected ‘‘islands’’ of bonds to avoid shared

bonds between ‘‘working’’ processors.

For massively parallel and memory-distributed systems it is essential to parallelize SHAKE in addition
to the forces. A program can be partitioned into a part that can be made parallel and a part that must run

serially. The maximal speedup is bound by the fraction of serial code that remains, and serial SHAKE can

take up to 10% of the total execution time.

Parallelization of SHAKE is challenging not because of the requirement for load balancing, because for

SHAKE this is static, can be done prior to the beginning of the simulation and is relatively easy to do. One

difficulty is that the usual SHAKE formulation requires serial adjustment of constraints (bonds), one bond

after the other. An alternative to the bond relaxation algorithm is therefore desirable. Another difficulty is

that the serial algorithm requires numerous iterations. When the forces are computed, they are computed
once in a time step. In contrast, usual SHAKE bond relaxations may iterate numerous times in a single time

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 195
step and therefore require closing and opening a number of communication channels (the actual amount of

data transfer is not so large). As part of an effective parallelization of SHAKE it is desirable to reduce the

number of iterations as much as possible, and to make the algorithm rigorously equivalent to the serial ver-

sion. Finally if a true parallel algorithm for constrained dynamics is formulated, the problem of commu-

nication overhead remains. While this overhead diminishes as the system size increases for the (small)
examples of the present manuscript the communication overhead is significant. We have put forward the

idea that a matrix formulation of SHAKE (known already from the original work of Ryckaert and Ciccotti

[18] and further developed in the work of Barth et al. [2]) in conjunction with the conjugate gradient algo-

rithm is an effective way of addressing the above points. For enhanced efficiency the conjugate gradient

algorithm is using a symmetric version of the matrix that was introduced by Barth et al. [2]. Of course it

is important for the new algorithm to exploit a potential block structure of All0 , which is also what we have

done. The algorithm for parallelization of SHAKE that we present here is expected to work for both atomic

and spatial decomposition, even though we have pursued here (in accord with our research interest) only
atom decomposition, which is more appropriate for small systems. Further evaluation of the spatial decom-

position option can be found in Section 9.

Another comment is about hardware architecture. We restrict the numerical examples to the (cheaper)

solution of distributed-memory parallel-systems such as clusters (as opposed to shared memory computers).

Although the same algorithm can be effective for both architectures, the distributed memory system is

harder to optimize.

Below we present a brief overview of constraint dynamics and then discuss the proposed parallel algo-

rithm for SHAKE. We close by numerical examples.
2. Constrained dynamics and SHAKE

The beauty of the SHAKE algorithm is the realization that the constraints need to be satisfied exactly at

each step, and that it is insufficient to determine the exact Lagrange�s multipliers of the differential equation

[18]. It is necessary to determine the coordinates that satisfy the constraints exactly for a finite time step.

Alternatively, (as is done below) the Lagrange multipliers can be defined in the context of a finite time step.
If only the constraint forces and Lagrange�s multipliers from the differential equation are used, the numer-

ical errors in the constraints (using a finite integration step Dt) accumulate during the simulation. By the

end of the day and the end of a long simulation, very significant errors in the constraints are evident. It

is necessary to consider explicitly the equations for the constraints (and not only the constraint forces) when

integration with a finite step is used.

At this point it is convenient to introduce a concrete numerical algorithm, and we choose the velocity

form of the Verlet algorithm [23]
Xnþ1 ¼ Xn þ V nDt þ
Dt2

2
M�1 �rUn �

X
l0

knl0rrnl0

 !
;

V nþ1 ¼ V n þ
Dt
2
M�1 �rUn �

X
l0

knl0rrnl0 � rUnþ1 �
X
l0

knþ1l0rrnþ1l0

 !
:

ð3Þ
We denote by Xn and Vn the coordinate and the velocity vectors at step n. Below we deal first with the
constraints on the coordinates. The velocity constraints that are simpler to handle will come later. Con-

straining explicitly the velocities is also called RATTLE [1]. Lagrange�s multipliers that exactly satisfy

the constraints are not known (i.e., rl(Xn + 1) = 0 "l) and need to be determined from the equations

of the constraints.

196 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
We denote by X ð0Þ
nþ1 and V ð0Þ

nþ1 the vectors generated from the Xn and Vn vectors by a single integration

step in the absence of the constraints. The constraint at Xn + 1 is expanded linearly near X ð0Þ
nþ1
rl X nþ1ð Þ ¼ 0 ’ rl X ð0Þ
nþ1

� �
þrrljX¼X ð0Þ

nþ1

Xnþ1 � X ð0Þ
nþ1

� �

¼ rl X ð0Þ
nþ1

� �
�rrljX¼X ð0Þ

nþ1

Dt2

2
M�1

X
l0

kl0rrl0 jX¼Xn
: ð4Þ
We use Eq. (3) to record the difference between Xn + 1 and X ð0Þ
nþ1 as

Dt2

2
M�1

P
l0kl0rrl0 . The unknowns in Eq.

(4) are Lagrange�s multipliers kl0 . We define the matrix Að0Þ
ll0
Að0Þ
ll0 ¼ rrljX¼X ð0Þ

nþ1

Dt2

2
M�1rrl0 jX¼Xn

ð5Þ
and write in a more compact form a set of linear equations for kl0
rl X ð0Þ
i

� �
¼
X
l0

Að0Þ
ll0 kl0 : ð6Þ
The solution of these linear equations is a major bottleneck of the calculations in the SHAKE algorithm.
We denote the solution by kð0Þl0 . Since the constraints are, in general, nonlinear, Eq. (4) is approximate and

the exact solution of the linear equation is insufficient. We construct a first-order correction to the exact

coordinates Xn + 1
X ð1Þ
nþ1 ¼ X ð0Þ

nþ1 �
Dt2

2
M�1

X
l

kð0Þl;nrrl;n: ð7Þ
This intermediate coordinate vector is plugged back into the nonlinear equations of the constraints. A new

linear expansion of the constraint (now near X ð1Þ
nþ1) interpolates to the exact coordinate Xn + 1, and defines a

Newton�s-like procedure for the iterative solution of a nonlinear equation by a sequence of linear

approximations
rl X nþ1ð Þ ¼ 0 ’ rl X ð1Þ
nþ1

� �
þrrljX¼X ð1Þ

nþ1

Xnþ1 � X ð1Þ
nþ1

� �

¼ rl X ð1Þ
nþ1

� �
�rrljX¼X ð1Þ

nþ1

Dt2

2
M�1

X
l0

kl0;n � k 0ð Þ
l0 ;n

� �
rrl0

���
X¼Xn

: ð8Þ
The expression for X ð1Þ
nþ1 from Eq. (7) is used in Eq. (8). Note the similarity to Eq. (4) that is our zero-order

iteration. The difference between Eqs. (4) and (8) (Eq. (8) is our first-order iteration) is the use of the update

of Lagrange�s multiplier. We define kð1Þl0;n � kl0 ;n � kð0Þl0;n

� �
and a new matrix that couples the constraints

Að1Þ
l;l0 ¼ rrljX¼X ð1Þ

nþ1

Dt2

2
M�1rrl0 jX¼Xn

. A linear equation for kð1Þl0;n � rl X ð1Þ
i

� �
¼
P

l0A
ð1Þ
ll0 k

ð1Þ
l0 ;n is formulated. The

solution, kð1Þl;n , enables us to write the next approximation
X ð2Þ
nþ1 ¼ X ð1Þ

nþ1 �
Dt2

2
M�1

X
l0

kð1Þn;l0 � rrn;l0
��
X¼Xn

¼ X ð0Þ
nþ1 �

Dt2

2
M�1

X
l0

kð1Þn;l0 þ kð0Þn;l0

� �
� rrn;l0

��
X¼Xn

: ð9Þ
And in more general terms
X ðkÞ
nþ1 ¼ X ðk�1Þ

nþ1 þ Dt2

2
M�1

X
l0

kðk�1Þ
l0 rrl0 ¼ X ð0Þ

nþ1 þ
Dt2

2
M�1

X
l0

Xk�1

k0¼1

kðk
0Þ

l0

 !
rrl0 : ð10Þ
Note that in order to determine kðkÞl0 we need to reconstruct the matrix AðkÞ
ll0 . The iterations terminate when

rl X ðkþ1Þ
nþ1

� ���� ��� 6 e 8l, where e is a small positive number.

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 197
3. Further discussion of the matrix A

In most applications A is a highly sparse matrix, reflecting a few weakly coupled constraints. Constrain-

ing the bonds in a polymer is a typical case. For example, rl = (ri�rj)
2� dij, where ri and rj are the vector

positions of atoms i and j , and dij is their fixed (constrained) distance. Since a single atom typically has 2–4
bonds, the matrix is highly sparse, suggesting that a greedy algorithm [6] is likely to be successful. Indeed, a

serial algorithm was designed for fixing the coordinates along the directions determined by $rl, adjusting
the coordinates according to one constraint at a time. This algorithm avoids the inversion of the matrix A

and the explicit calculation of Lagrange multipliers. The above algorithm is, however, inherently serial and

is difficult to parallelize in a consistent and rigorous way for the reasons discussed in the introduction. It is

also limited to highly sparse matrices.

We therefore return to the formulation in (6). The Lagrange multipliers could be found using standard

linear techniques, as discussed in the original paper of SHAKE [18]. Use of the linear equations, and a
solution of the inverse of the matrix All0 on a shared memory machine were discussed in Mertz et al.

paper [11]. Here, we exploit further the matrix formulation. In particular, we note that usually a reason-

able guess for Lagrange�s multipliers is available (e.g., Lagrange�s multipliers from the previous step). It

therefore makes sense to build on this guess and to determine Lagrange�s multipliers not by straightfor-

ward solution of linear equations but using minimization based on the initial guess. The conjugated gra-

dient algorithm comes to mind here. What function should we minimize? In principle any linear equation

of the form Ax = b could be re-written in a form ready for conjugate gradient minimization as

F(x) = (Ax�b)t(Ax�b) = 0. However, this formulation is expected to be more expensive that the ap-
proach we finally used (see below) for two reasons: first, we need to compute matrix multiplication

(an ‘3 operation in a worst case scenario), and second, we need to re-compute the matrix in every

SHAKE iteration. These two conditions led us to use the symmetric matrix formulation [2]. We note that

the difference between rrljX¼X ð0Þ
i

and rrljX¼X i
is of order of O(Dt). Ignoring this difference makes our

original linear expansion correct to the order of O(Dt3) instead of O(Dt4) and simplifies the matrix AðkÞ
ll0

to a symmetric form
AðkÞ
ll0 ffi rrljX¼X i

Dt2

2
M�1rrl0 jX¼X i

� All0 : ð11Þ
We are losing one-order of accuracy (O(Dt3) instead of O(Dt4)), which means that the calculations employ-

ing All0 will converge more slowly (a larger number of iterations) and the radius of convergence may be

smaller. In practice, the number of iterations increases by 10–20%, and no change in the radius of conver-

gence was observed.

Despite the above disadvantages it is efficient to use the symmetric matrix, and to minimize an alterna-

tive function F(x) = 1/2xtAx�xtb because:

(a) The non-symmetric matrix, AðkÞ
ll0 is re-computed each of the k iterations described in the previous sec-

tion. The symmetric matrix, All0 , is computed only once for all the iterations associated with a single

time step.

(b) We avoid the need to compute matrix multiplications in the general implementation of conjugate gra-

dient for asymmetric matrices.

We also need the matrix All0 to be positive definite. For a matrix to be positive definite it is sufficient to
show that for any real non-zero vector a of length ‘ (‘ is the number of constraints) we have atAa > 0. The

matrix All0 can be represented as a sum of scalar products yl and yl0 yl ¼ t Dtffiffi
2

p �M�1=2 � rrl

� �
. The matrix

element is

198 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
atAa ¼
X

ll0
alAll0al0 ¼

X
ll0

al
X
k

ylkyl0k

 !
al0 ¼

X
k

X
l

alylk

 ! X
l0

al0yl0k

 !
¼
X
k

X
l

alylk

 !2

> 0:

ð12Þ

In Appendix A, we consider a special case of the matrix All0 . This special case is of considerable practical

interest since it requires only a single calculation of the matrix throughout the simulation.
4. Determination of the Lagrange multipliers by minimization

For a positive definite matrix it is possible to efficiently solve kl0 by a minimization procedure (here we

used conjugate gradient with pre-conditioning [14]). We define a quadratic target function (in kl0) with a
minimum at the desired solution for Lagrange�s multipliers
F ¼ 1

2
ktAk� ktr: ð13Þ
Given that A is positive definite the minimization of F ðdF
dk ¼ Ak� r ¼ 0Þ is equivalent to the linear problem

stated above, which clarifies why we insisted in the previous section on having A symmetric and positive

definite. (We note that there is another way to find k; as we discussed in the previous section, it is also pos-
sible to use non-symmetric A using minimization of a quadratic function in k. Consider D = r � Ak and a

target function F 0 = Dt Æ D. F 0 is more complex to compute and includes (the expensive) computations of

AtA. We therefore did not purse this alternative in our studies.)

For completeness and to appreciate the parallelization process, we briefly describe the conjugate gradient

algorithm. In conjugate gradient we perform a sequence of line minimizations. For that purpose we need to

determine the direction of the current line minimization (for example, in the steepest descent minimization

the direction is the opposite direction of the gradient of the target function). The second ingredient is to

determine the size of the displacement in the predetermined direction. The two steps are defined:

(a) The determination of pk, the vector of the direction of search at step k.

(b) The determination of the step size, ak, a scalar that determines the size of the displacement along the

pk direction in step k.

We define the gradient of the function F at minimization step k as gk ” Akk � rk. In the first step the

search exactly follows the direction of the gradient p1 = �g1. The minimum position along the line defined

by p1 and the initial value k0 is determined by a single parameter a: k1 = k0 + ap1 = k0 � ag1. The gradient of
the function at the minimum along the search line must be orthogonal to g1. We therefore have:

g1 � A k0 þ ap1ð Þ � r½ � ¼ 0 ! �agt1Ag1 þ gt1g1 ¼ 0 and a1 ¼
gt
1
g1

gt
1
Ag1

. The above scheme describes a steepest des-

cent step, which is used in the conjugate gradient algorithm only for the first time. For any other minimi-

zation step k (k 6¼ 1) the conjugate gradient search direction is pk = �gk + bk Æ pk � 1. The parameter bk is
chosen to ensure that the new search direction (pk) is ‘‘conjugate’’ to the previous search direction (pk�1),

which means satisfying the condition pkApk�1 = 0. This condition ensures that sequential minimizations are

in independent directions for quadratic functions, and convergence to the exact answer by at most ‘ steps (‘
is the number of Lagrange�s multipliers). In practice the number of steps can be reduced significantly [14].
In our experience only a few minimization steps (about four) are required to find high-quality Lagrange

multipliers for hundreds to thousands of constraints. The scalar parameter bk is determined by

bk ¼
gtkgk

gt
k�1

gt
k�1

, the step size in the new search direction is ak ¼
gtkgk
ptkApk

, and the new Lagrange�s multipliers are

k(k+1) = k(k) + akpk.

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 199
One more way of enhancing the performance of conjugate gradients is the use of preconditioning. To

accelerate the convergence, an approximate inverse can be helpful. Consider the linear equation of interest

Ak = b and let B be non-singular matrix. The more degenerate the eigenvalue spectrum of A, the more effi-

cient the conjugate gradient algorithm. Define g = Bk, we then have ((B�1)tAB�1)g = (B�1)tb, which

depending on the properties of B can accelerate the convergence significantly. We have used the diagonal
of A to define a diagonal matrix B = (AD)1/2 = [diagonal (A)]1/2 with a trivial inverse. This simple precondi-

tion squeezed another iteration of two on our behalf. We define C ” BtB, e-maximum allowed error, kmax

maximum number of iterations, and outline the algorithm below

Input: k1, and A, r, C
Initiate loop:
k ¼ 0;

g1 ¼ Ak1 � r:

g1 ¼ C�1g1;

p1 ¼ �g1:
For (|gkt|P e, k = k + 1, k < kmax�1)
ak ¼
gtkgk
ptkApk

;

kkþ1 ¼ kk þ akpk;

gkþ1 ¼ gk þ akApk;

gkþ1 ¼ C�1gkþ1;

bkþ1 ¼
gtkþ1gkþ1

gtkgk
;

pkþ1 ¼ �gkþ1 þ bkþ1pk:

ð14Þ
end

The computational efforts of the conjugate gradient algorithm, preconditioned or not, are focused on the

matrix vector multiplication Apk and the scalar products gtkþ1 � gkþ1.

Alternatives for solving the linear equations are possible (for example, Gaussian elimination [22]), and
we did not explore them in detail. Nevertheless, the conjugate gradient iterations converge quickly and par-

allelize easily, as described below, making it a useful technique for the problem at hand.
5. Representation of the sparse matrix A

The brief description of the minimization algorithm shows that in each iteration step, we need to perform

matrix–vector multiplication and a few scalar products. Since the matrix (A) is sparse we wish to represent
it in a way that (a) will make it possible to perform efficient matrix–vector multiplication and (b) will store

only non-zero elements. There are many representations of sparse matrices that can be used in principle. We

have chosen one representation that works well for the task at hand. While we have not made a careful

investigation of compact representation of sparse matrices in the context of the application at hand we

looked at a few alternatives. The requirements of compact storage, minimizing communication between

processors, and ease of access to relevant elements are not trivial to satisfy simultaneously and work well

200 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
in the protocol discussed below. Two vectors are stored: (i) a vector, V, with all the elements of A that are

not zero and (ii) a pointer, P, to these elements. The first ‘ elements of V are the diagonal elements of A and

the off-diagonal elements follow, one row at a time. The first ‘ elements of the vector P point to the end of

the rows of the matrix A as stored in the vector V. The element ‘ + k of P is the column in A of the ‘ + k

element of V. For example, if the sparse matrix A is
A ¼

1:2 4:1 0 0

4:1 7:9 0 0

0 0 9 0

0 0 0 8:2

0
BBB@

1
CCCA;
we have V ¼ ð1:2 7:9 9 8:2 4:1 4:1Þ and P ¼ ð5 6 6 6 2 1Þ.
The connectivity of the system is not changing during the simulation. We do not add, or remove con-

straints or change the identity of the atoms that are constrained. The vector P is therefore fixed during
the simulation. For each time step, only the vector V (the non-zero elements of the matrix A) requires

an update. The number of these elements is much smaller than the size of the matrix A. For example,

the number of bond constraints in myoglobin (a numerical example that we present below) is 1589. The

length of the vector V is 6174, significantly smaller than 1589 · 1589 (99.7% of the elements are zero).
6. Parallelization of conjugate gradient

The list of constraints is divided between all the processors. Each processor has a fixed number of con-

straints that it works on, and that does not change during the simulation. There are three types of opera-

tions that require parallelization:

(1) An inner-product vector. Each processor multiplies the elements from its own list and sums them up. A

summation of the results from the different processors is performed.

(2) Summation of vectors to find the spatial displacement vector (Eq. 10). Every processor sums up the

contribution to the displacements arising from its own set of constraints and the contributions to
the displacements are summed over all processors.

(3) Multiplication of a vector by a matrix. This is the most complex part. The type of parallelization that

we used assumes that the matrix A is sparse with most of the elements centered near the diagonal of

the matrix. Each of the processors is responsible for only a part of Lagrange�s multipliers vector and

its saves only the rows in the matrix that directly multiply this part of the vector. Of course, to obtain

a correct result for the vector matrix multiplication we need elements that are not available in the cur-

rent processors. These elements are transferred primarily from nearby processors since the matrix ele-

ments are concentrated near the diagonal. Since our prime interest is in ‘‘almost’’ linear polymers (as
proteins are), the natural ordering of atoms in the polymer follows (roughly) the diagonal of the

matrix of constraints. We also note that uncoupled blocks of constraints (e.g., water molecules) are

treated in the same way. We obviously make sure that a single water molecule (a block of three con-

nected bonds) is not broken between different processors.

Nevertheless, highly off-diagonal constraints are also possible (for example between the side chains of

cysteine residues in proteins). Therefore each of the processors has three lists of Lagrange�s multipliers

to send:

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 201
(i) a list of elements to send to the nearby processor on the right,

(ii) a list of elements to send to the nearby processor on the left,

(iii) a list of elements to send to a processor that is not close.

Of course list (iii) is usually very small in proteins, making the assumption of ‘‘near the diagonal’’ sound.
These elements are sent to the processors that need them prior to the multiplication. After the communi-

cation is complete the vector–matrix multiplication is performed independently on each of the nodes.
7. The velocity constraints

The velocity constraints are implemented as described in RATTLE [1]. We consider the constraint rl(X)
and differentiate it with respect to time
drl Xð Þ
dt

¼ drl

dX
� V ¼ rrl � V ¼ 0 8l: ð15Þ
Of course, we wish the above scalar product to be zero for the newly generated step Xn + 1. Note that

we consider Eq. (15) only after we computed the coordinates of the next step. We therefore have from

Eq. (3)
V nþ1 ¼ V n þ
Dt
2
M�1 �rUn �

X
l0

knl0rrnl0 � rUnþ1 �
X
l0

knþ1l0rrnþ1l0

 !
;

V nþ1 ¼ �V n þ
Dt
2
M�1 �rUnþ1 �

X
l0

knþ1l0rrnþ1l0

 !
¼ V ð0Þ

nþ1 �
Dt
2
M�1

X
l0

knþ1l0rrnþ1l0

 !
;

�V n ¼ V n þ
Dt
2
M�1 �rUn �

X
l0

knl0rrnl0

 !
;

V ð0Þ
nþ1 ¼ �V n þ

Dt
2
M�1 �rUnþ1ð Þ:

ð16Þ
Since the coordinates Xn + 1 are known before we propagate the velocities we can compute V ð0Þ
n directly, and

we have for the constraints
V nþ1 � rrnþ1;ljX¼Xnþ1
¼ V 0ð Þ

n � rrnþ1;ljX¼Xnþ1
� Dt

2

X
l0

knþ1;l0rrnþ1;l0 �M�1rrnþ1;ljX¼Xnþ1
¼ 0: ð17Þ
The matrix Dt
2
rrnþ1;l0 �M�1rrnþ1;l is Al;l0=Dt for the time step n + 1. The same matrix is therefore used for

coordinates and velocities. The constraints (Eq. (15)) are linear in Lagrange�s multipliers. The linear

equation (17) is therefore exact and no Newton�s-like iterations are required to determine Lagrange�s
multipliers.
8. Numerical experiments

The computational experiments were performed on an SP2 computer using MPI. Two molecular systems
were simulated: (i) the protein Myoglobin with 1563 atoms and 1589 bond constraints and (ii) a DMPC

lipid bilayer with water solvation (9630 atoms and 7668 bonds). All the runs were performed with 11 Å cut-

off distance for electrostatic and 8 Å for Lennard Jones interactions. The time step was 1 fs, and the tem-

perature was 300 K. The non-bonded lists were updated every 10 steps.

202 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
The parallel SHAKE algorithm discussed above was implemented in the program MOIL [8]. For com-

pleteness we briefly summarize the complete parallelization of the program.

The parallelization is based on atom decomposition in which interaction lists are divided between the

processors. Partial forces are computed on each of the processors and the vector of forces is gathered

and redistributed to all of the processors to be used in a new integration step. Some of the lists of interac-
tions are fixed (i.e., lists of bonds, angles, torsions, improper torsions and 1–4 interactions), and some are

dynamically constructed (Lennard Jones and electrostatic lists). The division between the processors of the

fixed lists is trivial and is done at the beginning of the simulation. The dynamically updated lists of the non-

bonded interactions are computed in parallel as well and were demonstrated to yield excellent load

balancing.

When the SHAKE algorithm was used we also parallelize the Verlet integrator. For the systems we

investigate, the number of SHAKE iterations that were required never exceeded 4. The convergence crite-

rion was 10�7 Å accuracy for each of the bond lengths.
In Table 1, we present the result for the simulation of the protein myoglobin for 2000 steps of dynamics.

This is a relatively small system for which the speedup is not expected to be significant. Nevertheless, the

table shows some speedup (a factor of 2 for four processors) and good load balancing, when the individual

routines are examined, suggesting the major problem to be the communication overhead for the SP2. Of

course when the system is small, the communication problem becomes more critical. A larger molecule will

make the ratio of computations to communication less overwhelming.

In Table 2, we consider a second example of membrane simulations with SHAKE. The larger system

naturally gives better results. We note that the set of 9630 atoms is not exceptionally large. There are
numerous studies of molecular systems of similar and larger sizes. The membrane system is easier to con-

strain since the connectivity is lower, making the constraint matrix not only sparse but also made of blocks.

We did not make an explicit use of the block structure of the matrix, however, this clearly makes the cal-

culations less demanding.

In Table 2, we summarize the run time of the parallel MOIL program with SHAKE. The speedup is

bound primarily by communication time. It is expected that faster communication protocols (and the

use of even larger systems) will improve the speedup factors. It also means the algorithm so presented is

expected to be more efficient on shared memory machines in which communication overhead is moot.
We comment that the usual serial version of SHAKE (the version that employs bond relaxation) is faster

in our hands than a serial version of the matrix SHAKE (with the conjugate gradient minimization) by a

factor of about 2 in the myoglobin system. Other matrix implementations seem to perform somewhat better

than regular SHAKE [2]. However, our code was not optimized to that level. This observation means that

to obtain a gain for a system like myoglobin (compared to the serial version of SHAKE) we need to run on

more than 2 CPUs in parallel.

Another comment is concerned with load balancing. Load balancing can be divided into static and dy-

namic lists, where static lists do not change during the simulations and are easy to divide between the pro-
cessors (e.g., bond or SHAKE lists). The dynamic lists in our code are those describing non-bonded

interactions, and are in principle harder to maintain and to balance compared to the static lists. In MOIL

we derive first a non-bonded list for residue-residue interactions and only then produce atom pair-lists. This

intermediate step adds to the complications since parallelization, done on the residue level, is not necessar-

ily well balanced. We are therefore using a self-correcting algorithm that ‘‘guesses’’ an optimal partitioning

between the processors following the residue lists. These residue lists are corrected for future calculations by

adjusting the residue selections according to the observed atomic lists. Despite the potential difficulties, the

length of our non-bonded lists deviates only slightly from ideal partitioning as can be exemplified by the
lengths of the observed atomic pair-lists in the myoglobin simulation. The atomic lists, after the first adjust-

ment of the residue lists (using 4 processors), include 41999, 42373, 41876, and 42088 atom pairs. The devi-

ation from ideal partition is less than 1%.

Table 1

Time distribution of critical subroutines in 2000 steps of dynamics for the myoglobin system

Function No. of processors

1 4 8 16

cdie 271.81 274.16 292.64 294.08

nbond 75.43 78.32 62.96 76.32

mult_mat_vec 58.06 59.76 62.4 58.81

build_mat_from_idx 7.88 11.64 16.96 28.32

conjugate_grad 10.05 10.68 11.52 15.04

mult_vec_vec 11.92 11.84 13.6 12.84

Total SHAKE 87.91 93.92 104.48 115.01

Total time in seconds (summation over all processors) 489.99 946.4 1792 3712

Speed up factors 1 2.1 2.22 2.15

The time step in all simulations was 1 fs. Conjugate gradient represents all the other operations in the minimization that are not

included in specific functions (for example, evaluation of the convergence). In theory the entry to the tables must be non-decreasing

when moving from left to right. However, memory access is sometimes improved when the fraction of the system size that is studied in

a single CPU is smaller and better fit into memory. The times provided (in seconds) are a sum over all processors. The summation can

be estimated more accurately than the total clock time, and since the load balancing is excellent (see text) the sum is similar for each of

the processors. Note the excellent results for individual routines and the less impressive results for the total time. A major factor

contributing to the total time (that does not show up in the individual routines) is the communication overhead. On the system

reported below (of a relatively small system, the isolated myoglobin molecule – 1563 atoms) the speedup on four processors comparing

serial and parallel versions without SHAKE was 3.5, a similar comparison with SHAKE yielded a factor of 2.1. Since SHAKE allows

doubling of the time step there is still a gain on four processors. The speedup for the membrane simulation with SHAKE (a system that

is moderately large – 9630 atoms – see Table 2) was 11 on 16 processors. The same time step (1 femtosecond) was used in all the

simulations. A detailed explanation of the different routines follows:

(i) cdie – The function that computes the non-bonded interactions (Lennard Jones and electrostatic).

(ii) nbond – The function that computes the pair list of atoms for the non-bonded interactions.

The above two routines (electrostatic and van der Waals interactions) are the only part of the MD calculations that require dynamic

load balancing and parallelize in a less than perfect manner. Calculations of bonds, angles, torsions, etc. with fixed static lists parallelize

perfectly.

(iii) mult_mat_vec – Multiply matrix by a vector (part of the conjugate gradient algorithm).

(iv) build_matrix_from_idx – The build-up of the matrix A in its compressed form using the existing pointer.

(v) mult_vec_vec – Scalar product of a vector by a vector (for the conjugate gradient algorithm).

Note also that build_matrix_from_idx seems not to parallelize well. Since the matrix size and index are fixed, the parallelization of

building the matrix can be efficient. However, we have made a choice to minimize the communication during matrix–vector multi-

plications, and we are computing some matrix elements on more than one processor. The repeats in computing matrix elements lead to

an increase in computational cost for build_matrix_from_idx and at the same time provide an almost perfect parallelization for

mult_mat_vec. The matrix is computed only once in a time step while the matrix–vector multiplication is performed as many times as

required by SHAKE convergence. For convenience we also provide the total time spent in SHAKE routines. The parallelization of the

computing component (as opposed to communication) is good. Similar quality of parallelization is obtained for the direct MD

integration. The bottleneck is the communication overhead as is reflected by the total time and the speed up factor.

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 203
9. Discussions and summary

We have presented a parallel implementation of SHAKE, an algorithm for solving classical equations of

motion with holonomic constraints. The essence of the SHAKE parallelization was the use of a minimiza-

tion algorithm to determine Langrange�s multipliers. The conjugate gradient algorithm converges rapidly

and is relatively easy to parallelize. The algorithm is implemented in MOIL [8], a publicly available molec-

ular dynamics suite of programs (http://cbsu.tc.cornell.edu/software/moil). Our algorithm is exact in the

sense that a parallel and a serial version are guaranteed to give the same answer. It also provides good load-
ing balancing between the processors, as we demonstrated numerically. A key element of the new algorithm

http://cbsu.tc.cornell.edu/software/moil

Table 2

Time distribution of critical subroutines in 1000 steps of dynamics for the membrane system

Function No. of processors

1 4 8 16

cdie 982 983.48 984.03 982.15

watwat 701.73 702.2 701.66 699.7

nbond 195.35 195.07 195.33 194.95

mult_mat_vec 103.65 96.62 92.06 88.39

nbondm 84.62 85.1 85.78 87.28

conjugate_grad 34.87 17.97 15.87 14.97

mult_vec_vec 20.61 19.85 20 21.23

Total run time in seconds (summation over all processors) 2280 2740 2872 3265

Speed up factor 1 3.33 6.35 11.19

The times quoted (in seconds) are a sum over all processors. Most of the functions were explained in the legend of Table 1. Other

functions are

(i) watwat – Compute non-bonded interactions between water molecules.

(ii) nbondm – Create a coarse grained neighbor list to be refined in nbond to an atom list.

204 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
is the use of the matrix formulation with conjugate gradient optimization of Lagrange�s multipliers. The

constraints� coupling matrix, All0 , and its matrix–vector product with Lagrange�s multipliers is distributed

between the CPUs. In essence the costly component of the SHAKE calculation becomes the parallelization

of a vector-sparse matrix product, which can be done efficiently regardless of the method to parallelize the

molecular dynamics algorithm (atomic or spatial decomposition). While the parallel algorithm is presented

in the context of atom decomposition in which a complete set of the coordinates of the atoms is kept on

each processor and the calculations of the forces (and the constraints) are parallelized, it should be straight-

forward to implement the algorithm for spatial decomposition. As long as the coupling matrix is domi-
nantly diagonal, and the constraints directly couple only a few nearby atoms, a good correspondence

between spatial decomposition of atoms and spatial decomposition of constraints (and the coupling matrix)

can be worked out. The atom decomposition approach is more appropriate for small system and long-range

interactions. The spatial decomposition approach is more appropriate for large systems with emphasis on

short-range interactions. Overall spatial decomposition (under the conditions stated above) parallelizes bet-

ter than the atom decomposition. The reality is that smaller systems and long-range interactions are more

difficult to parallelize and the gains for small systems are therefore modest. On the other hand small systems

and a few CPUs are common and modest gains that are broadly used are significant. Our choice of atom
decomposition reflects the authors� interests in systems of moderate sizes rather than difficulties with the

spatial decomposition approach.

We comment that the highly sparse nature of the coupling matrix in a broad range of applications, and

its distributed storage over different CPUs make the memory requirements essentially linear with the system

size. The algorithm is also able to detect when communication is not required and the matrix consists of

blocks. For example, simulations of water solutions, membranes, or docking of two proteins will exploit

the block structure of the matrix to minimize communication. Hence, even though tailored algorithms

can be used for water solution and other aggregates of small molecules (for which the constraint coupling
matrix has a block structure), similar performance is obtained using the current matrix formulation di-

rectly. We have obtained comparable performance for the membrane simulation with the current general

algorithm and a tailored algorithm for rigid water molecules. In fact, the present algorithm is a lot better

than the SHAKE implementation using bond relaxation for water molecules. The superior performance of

the matrix SHAKE is a result of the triangular configuration of water molecules that is known to converge

slowly with bond relaxation [2]. Of course, highly tuned algorithms for a specific molecule will win by the

Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206 205
end of the day, however, the generality and the uniform performance proposed by the current formulation

is convenient.
Acknowledgments

This work was supported in part by an NIH Grant GM059796 to R.E. Stimulating discussions with, and

the careful reading of the manuscript by Giovanni Ciccotti are gratefully acknowledged. We thank Stacey

Shirk for her editorial assistance.
Appendix A

An intriguing special case for the matrix A is constrained bonds and bond angles. This type of con-

straints is widely used in polymer simulations in physics and chemistry, and (of course) does not imply

that the molecule is rigid. Physically, constraining the angles is similar in concept to bond constraints.

Both correspond to high frequency stiff motions even though bonds are stiffer than angles. As an exam-

ple we note that the ECEEP force field for protein folding, developed in the group of Harold Scheraga,

requires that bonds and bond angles will be fixed [17], i.e., exactly the case introduced in this appendix.

Another example of simulations in dihedral angle space is shown in the research by Nobuhiro Go [20].

The formulation below will allow these studies to be done in the more convenient Cartesian formula-
tion. We constrain the angles using an extra bond, and a concrete example is outlined below. If rij and

rik are the vectors along the direction of the bonds and the angle is between rij and rik, we enforce the

constraints by three distances
r1 rij
� �

¼ r2ij � d2
ij r2 rikð Þ ¼ r2ik � d2

ik r3 rjk
� �

¼ r2jk � d2
jk: ðA:1Þ
The matrix element All0 will be non-zero if the constraints rl and rl0 share an atom (the mass matrix is diag-

onal). For bond constraints we have for the ith element of the constraint-force vector [$rl(rij)]i = 2(ri � rj).

Let the constraint l be associated with the (i,j) bond and the bond (i,k) associated with the constraint l 0. The

All0 matrix is therefore
All0 ¼
l ¼ l0 2Dt2 ri � rj

� �2 1
mi
þ 1

mj

� �
l 6¼ l0 atoms are shared 2Dt2 ri � rj

� �t 1
mi

ri � rkð Þ
l 6¼ l0 atoms not shared 0

8>><
>>:

9>>=
>>;: ðA:2Þ
Note that if the constraints are satisfied exactly in the previous step, All0 is independent of time and can

be constructed based on ideal distances and angles. The ideal distances being dij and angles hijk. We

have
All0 ¼
l ¼ l0 2Dt2 dij

� �2 1
mi
þ 1

mj

� �
l 6¼ l0 atoms are shared 2Dt2dij

1
mi
dik cos hjik

� �
l 6¼ l0 atoms not shared 0

8>><
>>:

9>>=
>>;: ðA:3Þ
Using Eq. (A.3) the matrix All0 and its inverse can be computed only once, at the beginning of the calcu-

lations and used anytime thereafter. Of course, if the number of constraints is large, calculating the inverse

in advance may be too costly. If we wish to constrain only the bonds (and not the angles) then the above
matrix All0 is not a constant (the constant version may still be useful as an approximation since both the

bonds and the angles are restrained with harmonic potential in most force fields).

206 Y. Weinbach, R. Elber / Journal of Computational Physics 209 (2005) 193–206
References

[1] H.C. Andersen, Rattle – a velocity version of the SHAKE algorithm for molecular dynamics calculations, Journal of

Computational Physics 52 (1) (1983) 24–34.

[2] E. Barth, K. Kuczera et al., Algorithms for constrained molecular dynamics, Journal of Computational Chemistry 16 (10) (1995)

1192–1209.

[3] D. Brown, J.H.R. Clarke et al., A domain decomposition parallel processing algorithm for molecular dynamics simulations of

polymers, Computer Physics Communications 83 (1993) 1–13.

[4] D. Brown, H. Minoux et al., A domain decomposition parallel processing algorithm for molecular dynamics simulations of

systems of arbitrary connectivity, Computer Physics Communications 103 (2–3) (1997) 170–186.

[5] T.W. Clark, J.A. McCammon, Parallelization of a molecular dynamics nonbonded force calculation for mimd architecture,

Computers & Chemistry 14 (3) (1990) 219–224.

[6] T.H. Cormen, C.E. Leiserson et al., Introduction to Algorithms, second ed., MIT Press, Cambridge, MA, 2001.

[7] S.E. Debolt, P.A. Kollman, AmberCube MD, parallelization of ambers molecular dynamics module for distributed-memory

hypercube computers, Journal of Computational Chemistry 14 (3) (1993) 312–329.

[8] R. Elber, A. Roitberg et al., Moil – a program for simulations of macromolecules, Computer Physics Communications 91 (1–3)

(1995) 159–189.

[9] G.D. Hawkins, C.J. Cramer et al., Pairwise solute descreening of solute charges from a dielectric medium, Chemical Physics

Letters 246 (1–2) (1995) 122–129.

[10] L. Kale, R.D. Skeel et al., NAMD2: greater scalability for parallel molecular dynamics, Journal of Computational Physics 151 (1)

(1999) 283–312.

[11] J.E. Mertz, D.J. Tobias et al., Vector and parallel algorithms for the molecular dynamics simulation of macromoleucles on shared

memory computers, Journal of Computational Physics 12 (10) (1991) 1270–1277.

[12] F. Mullerplathe, D. Brown, Multicolor algorithms in molecular simulations – vectorization and parallelization of internal forces

and constraints, Computer Physics Communications 64 (1) (1991) 7–14.

[13] H.L. Nguyen, H. Khanmohammadbaigi et al., A parallel molecular dynamics strategy, Journal of Computational Chemistry 6 (6)

(1985) 634–646.

[14] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, 1999.

[15] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics 117 (1) (1995) 1–19.

[16] S. Plimpton, B. Hendrickson, A new parallel method for molecular dynamics simulation of macromolecular systems, Journal of

Computational Chemistry 17 (3) (1996) 326–337.

[17] D.R. Ripoll, M.S. Pottle et al., Implementation of the ECEPP Algorithm, the Monte Carlo minimization method and the

electrostatically driven Monte-Carlo method on the Kendall Square Research KSR1 Computer, Journal of Computational

Chemistry 16 (9) (1995) 1153–1163.

[18] J.P. Ryckaert, G. Ciccotti et al., Numerical-integration of Cartesian equations of motion of a system with constraints –

molecular-dynamics of N-alkanes, Journal of Computational Physics 23 (3) (1977) 327–341.

[19] R.D. Skeel, Macromolecular dynamics on a shared memory multiprocessor, Journal of Computational Chemistry 12 (2) (1991)

175–179.

[20] M. Tomimoto, A. Kitao et al., Normal mode analysis of a nucelic acid with flexible furanose rings in dihedral angle space,

Electronic Journal of Theoretical Chemistry 1 (1996) 122–134.

[21] V. Tsui, D.A. Case, Theory and applications of the generalized Born solvation model in macromolecular Simulations,

Biopolymers 56 (4) (2000) 275–291.

[22] C.F. van Loan, Introduction to Scientific Computing, Prentice-Hall, Upper Saddle River, NJ, 1997.

[23] L. Verlet, Computer experiments of classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review

159 (1) (1967) 98.

[24] R. Zhou, R.A. Friesner et al., New linear interaction method for binding affinity calculations using a continuum solvent model,

Journal of Physical Chemistry 105 (2001) 10388–10397.

	Revisiting and parallelizing SHAKE
	Introduction
	Constrained dynamics and SHAKE
	Further discussion of the matrix A
	Determination of the Lagrange multipliers by minimization
	Representation of the sparse matrix A
	Parallelization of conjugate gradient
	The velocity constraints
	Numerical experiments
	Discussions and summary
	Acknowledgments
	Appendix A
	References

